Two–Connection Renormalization and Nonholonomic Gauge Models of Einstein Gravity
نویسنده
چکیده
A new framework to perturbative quantum gravity is proposed following the geometry of nonholonomic distributions on (pseudo) Riemannian manifolds. There are considered such distributions and adapted connections, also completely defined by a metric structure, when gravitational models with infinite many couplings reduce to two–loop renormalizable effective actions. We use a key result from our partner work arXiv: 0902.0970 that the classical Einstein gravity theory can be reformulated equivalently as a nonholonomic gauge model in the bundle of affine/de Sitter frames on pseudo–Riemannian spacetime. It is proven that (for a class of nonholonomic constraints and splitting of the Levi–Civita connection into a ”renormalizable” distinguished connection, on a base background manifold, and a gauge like distorsion tensor, in total space) a nonholonomic differential renormalization procedure for quantum gravitational fields can be elaborated. Calculation labor is reduced to one– and two–loop levels and renormalization group equations for nonholonomic configurations.
منابع مشابه
Nonholomic Distributions and Gauge Models of Einstein Gravity
For (2+2)–dimensional nonholonomic distributions, the physical information contained into a spacetime (pseudo) Riemannian metric can be encoded equivalently into new types of geometric structures and linear connections constructed as nonholonomic deformations of the Levi–Civita connection. Such deformations and induced geometric/physical objects are completely determined by a prescribed metric ...
متن کاملNonholonomic Ricci Flows: I. Riemann Metrics and Lagrange–Finsler Geometry
In this paper, it is elaborated the theory the Ricci flows for manifolds enabled with nonintegrable (nonholonomic) distributions defining nonlinear connection structures. Such manifolds provide a unified geometric arena for nonholonomic Riemannian spaces, Lagrange mechanics, Finsler geometry, and various models of gravity (the Einstein theory and string, or gauge, generalizations). We follow th...
متن کاملDeformation Quantization of Nonholonomic Almost Kähler Models and Einstein Gravity
Nonholonomic distributions and adapted frame structures on (pseudo) Riemannian manifolds of even dimension are employed to build structures equivalent to almost Kähler geometry and which allows to perform a Fedosov-like quantization of gravity. The nonlinear connection formalism that was formally elaborated for Lagrange and Finsler geometry is implemented in classical and quantum Einstein gravity.
متن کاملEinstein Gravity in Almost Kähler Variables and Stability of Gravity with Nonholonomic Distributions and Nonsymmetric Metrics
We argue that the Einstein gravity theory can be reformulated in almost Kähler (nonsymmetric) variables with effective symplectic form and compatible linear connection uniquely defined by a (pseudo) Riemannian metric. A class of nonsymmetric theories of gravitation (NGT) on manifolds enabled with nonholonomic distributions is analyzed. There are considered some conditions when the fundamental g...
متن کاملNonholonomic Algebroids, Finsler Geometry, and Lagrange–Hamilton Spaces
We elaborate an unified geometric approach to classical mechanics, Riemann–Finsler spaces and gravity theories on Lie algebroids provided with nonlinear connection (N–connection) structure. There are investigated the conditions when the fundamental geometric objects like the anchor, metric and linear connection, almost sympletic and related almost complex structures may be canonically defined b...
متن کامل